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1. Introduction

Head pose estimation (HPE) is an important topic in 
computer vision [1-4], which can be used for human attention 
interpreting. More than 30% of traffic accidents are ascribed to 
fatigue driving and inattention. In order to avoid traffic 
accidents and protect personnel safety and health, car 
manufacturers are committed to develop lots of driving 
assistant system, as shown in Fig. 1. Human head pose can 
provide a key cue in analyzing the human attention, intention, 
and motivation, etc. Thus, the driver gaze zone can be estimated 
by tracking the driver head. It has proved that head postures can 
be an excellent substitute for driver attention [4]. Furthermore, 
it is well known that HPE is widely utilized in many fields, such 
as pedestrian position prediction [5], social communication 
skills improvement [6], and gesture recognition [7]. However, 
estimating accuracy head pose directions is very difficult in 
practice due to the multiformity of the appearance caused by 
the pose changes and motion, such as illumination, occlusion, 
facial texture, etc. To tackle those problems, numerous 
algorithms have been proposed over the past decades. In sum, 
the existing HPE methods can be briefly divided into two 
streams: facial feature-based HPE method and deep learning 
(DL)-based HPE method.

1.1 Related work
Depending on the feature extraction principles, facial 

feature-based HPE methods can be classified into the three 
categories: template matching methods (TM-HPE),

(a) (b)

(c) (d)

Fig. 1. Head pose estimation by the proposed method. (a) Normal driving. (b) 
Talking in driving. (c) Occlusion by hand in driving. (d) Bumps in fast driving. 
Three color lines denotes the three angle directions of human head pose.

model-based methods (MB-HPE) and feature regression 
methods (FR-HPE). The basic idea of TM-HPE methods is to 
match the head pose directions of input images with the discrete 
standard models, which represent the ground-truth head pose 
labels [8]. The input head pose images are classified into the 
specific angle categories by evaluating the image matching 
degree with the exemplar set. These HPE methods are 
implemented easily and work well on discrete head pose 
images. However, it fails for the continuous angles head pose 
images, since continuous head pose templates are lacked in the 
image dataset. The aim of MB-HPE methods is to characterize 
the face with several landmarks [9, 10], and then locate the 
landmarks on real faces by the trained appearance models. The 
most common approaches can estimate the distance from a 
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reference coordinate system via coplanar facial landmarks. But 
the performance of MB-HPE methods is determined by the 
precise degree of facial landmark detection. In the real 
scenarios, facial landmarks are easily obscured, which limit the 
accuracy of prediction in HPE. The FR-HPE methods map the 
images to a head pose space by a trained regression function. 
Different from the regression tools, such as random forest [11, 
12], support vector machines and cascade [13], the FR-HPE 
methods are more accuracy than the aforementioned methods 
and achieve better real-time performance. These algorithms 
leverage hand-crafted features to extract information from the 
head pose images. While crucial improvements have been 
made with hand-crafted feature technologies, these 
hand-crafted features are not suitable for HPE task. 
Furthermore, it is not conducive to extract features on the 
large-scale datasets due to the time-consuming problem.

Recently, the adoption of deep learning (DL) technologies 
facilitates to overcome these issues. With the great success in 
speech, computer vision [14] and natural language processing 
[15] fields, DL has played a very important role in many areas 
[16, 17]. The convolutional neural network (CNN) can be 
trained automatically on large-scale datasets in an end-to-end 
manner. Patacchiola et al. [4] applied CNN technology in HPE 
field with dropout and adaptive gradient method for the first 
time. Over the past couple decades, various DL-based 
algorithms have been developed, such as multi-loss CNN [18], 
ordinal regression network [19], and attention network [20]. 
Some researchers have also attempted to improve the accuracy 
of head pose estimation from a multitasking perspective, such 
as [21, 22], and these impressive works have made significant 
progress. Compared with traditional algorithms, few DL-based 
HPE methods reveal the inherent image characteristics in HPE 
task. On the one hand, labels of head pose are ambiguity as 
human head pose is difficult to describe with an exact number. 
On the other hand, labels of head pose are collected at a small 
interval. It is difficult to exactly predict the poses if they are not 
included in training set.

1.2 Contributions of this paper
In this paper, two key finding are first revealed, which are 

called as the anisotropic property and unsmooth variation 
property. Based on the two properties, we propose an 
anisotropic angle distribution learning (AADL) model for head 
posed estimation. The model is learned via an end-to-end CNN 
which utilizes the covariance pooling layer to capture the 
second-order image features. The major contributions of this 
work can be summarized as three aspects.

1) Two key findings are revealed in this paper. Firstly, head 
pose image variations are different at the yaw and pitch 
directions with the same pose angle increasing on a fixed 
central pose. Secondly, With the fixed angle interval 
increasing, the image variations increase firstly and then 
decrease in yaw angle direction. Based on the two 
findings, original head pose annotations are converted into 
the anisotropic angle distribution labels.

2) A novel end-to-end HPE framework with the 
AADL-based CNN is proposed. The method adopts a 

CNN, which can leverage covariance pooling layer to 
capture second-order image features. The proposed model 
is trained with the RGB face images. To the best of our 
knowledge, this is the first work for HPE with an 
anisotropic angle distribution learning.

3) Experimental results on several public datasets indicate 
that the proposed method achieves the state-of-the-art 
performance on both prediction accuracy and robustness. 
Furthermore, the AADL method can work well for motion 
blur in head pose images, even for the occlusion image 
overwhelmed with some pose images missing.

1.3 Organization of this paper
The reminder of this paper is organized as follows. Two key 

findings are revealed in detail and constructed as the AADL 
labels in Section 2. Section 3 illustrates the concrete 
architecture of the AADL-based neural network model and its 
adversarial extension. Then, it is optimized by stochastic 
gradient descent algorithm. Section 4 demonstrates the 
evaluation results of experiments performed by the anisotropic 
angle label. Finally, we conclude this paper in Section 5.
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Fig. 2. Key finding 1: anisotropic property for HPE task. Head pose image 
variations are different at the yaw and pitch directions with the same pose angle 
increasing on a fixed central pose. For the central pose (0°, 0°), head pose 
image variations are different with increasing the same pose angle (15°) in yaw 
and pitch directions. The similarity of head pose in yaw direction (74.77%) is 
larger than that in pitch direction (60.67%).

2. Characteristics analysis for head pose estimation

2.1 Head pose estimation
Head pose estimation refers that the computer determines the 

position and attitude parameters of the human head in 
three-dimensional space by analyzing and predicting the input 
images or video sequence. The head pose is generally 
considered as a rigid body transform and the space is relative to 
the camera. HPE aims at estimating the two-dimensional Euler 
angles, which includes the pitch and yaw angles. Given an input 
face image X and a head pose angle Y, the task of HPE network 
is to construct a function to predict the exact label Y from image 
X.

2.2 Anisotropic angle head pose
It can be observed that human head is a non-spherical 

symmetry rigid body, which means that the rotation of head 
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varies in different directions. We observe that the rotation of 
human head in the pitch direction (red arrow) is more obvious 
than that in the yaw direction (green arrow). This property is 
shown in Fig. 2(a). In other words, the similarity between a 
certain pose and its yaw angle adjacent poses are different from 
that with its pitch angle adjacent poses. 
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Fig. 3.  Feature similarity of two face images is computed by the feature vectors 
which are extracted from a pre-trained neural network LetNet-5 [23].

To quantitatively formulate this observation, the cosine 
similarity function is employed to calculate the feature 
similarity (FS) of two head pose images. The pre-trained 
LeNet-5 [23] neural network is introduced to extract the image 
features and calculate the feature similarity of two head pose 
images. This network has six layers with two convolutional 
layers, two pooling layers, and two fully connected (FC) layers. 
The last FC layer of neural network (NN) contains the most 
representative features of one image. Two vectors extracted 
from the last FC layers is used to compute the cosine similarity. 
Given two images X1 and X2, NN is regarded as a function that 
outputs a feature vector. The detail process of feature similarity 
is illustrated in Fig. 3. The formula is defined as,
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where F(X) denotes the feature similarity of image X, and NN(X) 
is the activation of the FC layer.

Fig. 4. Anisotropic label construction according to the key finding 1. We 
compute the all similarity between central pose X1 and other poses X2, X3, X4 and 
X5. The shape of similarity matrix is fitted by a two-dimensional Gaussian 
distribution.

The formula (1) is utilized to measure the similarity of the 
head pose images. The feature similarities are calculated 
between the central pose X1, and its neighboring poses X2, X3, 
X3 and X5, respectively. In Fig. 2(b), it can be observed that the 

feature similarities (74.77%, 70.42%) between the image of 
pose (0°, 0°) and pose (0°, ±15°) are significantly greater than 
the feature similarities (60.67%, 58.01%) between the face 
image of pose (0°, 0°) and pose (±15°, 0°). In Fig. 4, we plot all 
the similarity matrixes, which can be fitted by a 
two-dimensional Gaussian distribution (Figs. 4(b) and 4(c)). 
The ratio map can be achieved after calculating all the 
similarity matrixes. 

To quantitatively reveal the anisotropic property, the ratio of 
feature similarity is defined at the yaw direction and pitch 
direction. Given three images X1, X2 and X3, the definition is 
formulated as,
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Based on this equation, we calculate the ratio values for the 
pose (0°, 0°) in Fig. 2(b), namely, Ratio1=FS1/FS2=0.81, and 
Ratio2=FS4/FS2=0.78. Then, we set all other head poses as the 
center pose, and calculate the ratio similarity between the 
center head pose image and its pitch/yaw neighbor image. It 
finds that the ratio values are ranged as [0.6, 1]. Thus, we argue 
that the rotation of human head in the pitch direction is more 
obvious than that in the yaw direction. We define the finding as 
the anisotropic property for HPE in this paper.
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Fig. 5. Key finding 2: unsmooth variation property. With the fixed angle 
interval increasing, the image variations increase firstly and then decrease in 
yaw angle direction.

2.3 Unsmooth variation in yaw direction
Usually, the shape of human head can be considered as a 

polyhedron. And the shape of human face skull is flat since the 
neurocranium appears as an oval ball. Moreover, the face image 
captured by camera only shows a two-dimensional surface of 
the face, but not the three-dimensional shape. Consequently, 
the variations of face image are nonuniform while the head 
rotates the same angle in the yaw direction. We take negative 
yaw angle as an example, as is shown in Figs. 5(a)-5(d). From 
0° (Fig. 5(a)) to 30° (Fig. 5(b)), two cheeks and both eyes can 
be observed clearly. However, from 30° (Fig. 5(b)) to 60° (Fig. 
5(c)), the right facial profile (blue arrows) appears and left eye 
(red arrows) is hidden gradually. From 60° (Fig. 5(c)) to 90° 
(Fig. 5(d)), the variation is hard to observe between two 
images.

This observation is also quantitatively studied in this paper. 
In Figs. 5(e)-5(g), the feature similarity between images of 0° 
and 30° is 66.25%, 30° and 60° is 52.54%, and 60° and 90° is 
69.79%. As can be seen, with the fixed angle interval 
increasing, the image variations increase firstly and then 
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decrease in yaw angle direction.
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Fig. 6 Head poses  from the Pointing’04 database together with 
their Gaussian distribution generated by Eqs. (3) and (4).

2.4 Anisotropic angle distribution

According to the analysis in Fig. 4, the region of feature 
similarity of images can be fitted by a two-dimensional 
Gaussian distribution, whose diagonal elements in the 
covariance matrix are different. The soft label is aimed to 
augment data on the label space by utilizing the correlate 
knowledge between each category [24]. Inspired by this, an 
attempt is made to convert the annotated head pose labels to the 
angle distributions. Taking Pointing’04 dataset as an example, 
the yaw and pitch angles are combined in the HPE. In Fig. 6, all 
the head poses can be plotted in a matrix, which has 13 rows 
and 9 columns. Given a head pose image X, its central pose 
angle is defined as , where  and  are the row 
number and column number of pose image, respectively. For 
instance, y00=(0, 0) denotes the head pose (pitch=90°, 
yaw=90°) in Fig. 6. The angle distribution ŷ is defined as,

,                          (3)

and
,  (4)

where m and n are row number and column number in the 
matrix. The function of Eq. (3) is to normalize the sum of 
probability values as 1. And the covariance matrix Ω is set as 

. In this matrix Ω, if the diagonal elements are equal, 

the Gaussian distribution in Eq. (4) will be isotropic shape. If 
the diagonal elements are not equal, the distribution will be 
anisotropic shape. The variable η is set to achieve the 
anisotropic 2D Gaussian distribution, which can represent the 
anisotropic property (key finding 1) for HPE task. On the basis 
of the quantitative calculation in Fig. 6, the η values belong to 
the range η∈(0.6, 1).

In Fig. 7, the unsmooth variation property (key finding 2) is 
converted into the different values of the standard deviation σ in 
matrix Ω. Figure 7(a) shows the angle distribution when head 
pose (pitch = 0°, yaw = 0°). Figure 7(b) shows the angle 
distribution at head pose (pitch = 0°, yaw = -45°). It can be 

found that σ1 > σ3 > σ2. Based on the Eq. (3) and Eq. (4), finding 
1 and finding 2 can be expressed.
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Fig. 7. Unsmooth variation of head pose angle distribution. (a) (0°, 0°), (b) (0°, 
-45°), and (c) (0°, -75°). The angle distribution of -45° is smaller than that of 0° 
and -75°. With the fixed angle interval increasing, the image variations increase 
firstly and then decrease in yaw angle direction.

3. Methodology and optimization

3.1 MAP-based HPE model
The maximum a posterior (MAP) estimation method, which 

inherently includes a priori constraints in the form of prior 
probability density functions, has been wildly used in a mass of 
applications. In this paper, we illustrate that the head pose 
estimation problem can be converted as the maximizing the 
posterior probability problem. Given a set of face images X 
with the constructed ground-truth angle distribution Ŷ, the aim 
of training is to find the best θ estimation by maximizing the 
posterior probability p(θ|X, Ŷ). The θ denotes the all the neural 
network parameters in the proposed AADL model. It can be 
written as,

.                         (5))|,(maxarg θYXpθ
θ


*

According to Bayes rule, Eq. (5) becomes,

.                       (6)
),(

)()|,(maxarg
YXp

θpθYXpθ ˆ
ˆ

* 

Since p(θ|X, Ŷ) is independent of p(X, Ŷ), p(X, Ŷ) can be 
considered as a constant. Hence, Eq. (6) can be rewritten as,

.                      (7))()|,(maxarg θpθYXpθ ˆ* 
Employing the monotonic logarithm function, Eq. (7) can be 

rewritten as
.            (8) )(log)|,(logmaxarg θpθYXpθ  ˆ*

There are two probability density functions need to be 
defined. The likelihood probability p(X, Ŷ|θ) represents the 
distance between the predicted distribution and the 
ground-truth distribution. Kullback-Leibler (KL) divergence is 
selected to measure the distance. Consequently, the likelihood 
probability can be presented as

,                        (9)
t t

t
t y

y
yθYXp *ˆ

ˆ
ˆˆ ln)|,(

where ŷ* denotes the prediction label.
To reduce the overfitting problem, a smooth constraint is 

regularized on the parameters θ of CNN. In this paper, the 
Gaussian distribution is introduced to suppress the noise error 
in parameters θ. Namely, the priori probability p(θ) in Eq. (8) 
can be formulated as, 
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.                   (10)
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θ
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Then, substituting Eqs. (9) and (10) in Eq. (8), our MAP 
problem is transformed to an object minimization that 
minimizes the negative logarithm of the probability. Hence, Eq. 
(8) can be rewritten as 

.           (11)







  2

2lnminarg ||||
ˆ
ˆˆ

*
* θλ

y
yyθ

t t

t
t

Finally, the loss function of AADL model is proposed as:

,                    (12)2
2ln)( ||||

ˆ
ˆ

ˆ
* θλ

y
y

yθL
t t

t
t  

where the symbol λ denotes the regularization coefficient. The 
L2-norm is utilized in the hidden layer to avoid the substantial 
growth of parameters in the training phase. The promised 
presentation can be achieved while λ is set as 1×10-4. It is worth 
noting that the proposed model (12) is an instance of the 
likelihood probability p(X, Ŷ|θ) and prior probability p(θ) in the 
MAP framework (8).

3.2 Network architecture
In Fig. 8, the proposed AADL network includes three parts: 

convolutional layer, covariance pooling layer and output layer. 
For convolutional layer, backbone of the VGG16 [25] is 
utilized to extract the features of the input images. The size of 
the image size is 224×224×3 (height, width and channel). And 
the feature matrix size of output of the final convolutional layer 
(input of the covariance pooling layer) is 7×7×512. Traditional 
CNNs are designed with convolutional layers, pooling layers 
and FC layers to capture only first-order statistics such as mean 
or maximum. It is considered that the second-order statistics 
such as covariance are deemed to be better regional descriptors 
than first-order statistics [26]. HPE task is more directly bound 
up with how facial key points are distorted, rather than presence 
or absence of specific key points. Consequently, second-order 
statistics are more suitable to capture such distortions than 
first-order statistics. We introduce covariance pooling rather 
than average or maximum pooling after the last convolutional 
layer, and build covariance matrices as global image 
representations. The backpropagation is not easy due to the 
nonlinear functions involved by covariance pooling. We refer 
the methodology of calculating gradients in [27] for end-to-end 
learning.

3.3 Covariance pooling layer
Let E ∈Rd×N be a matrix produced by the last convolutional 

layer. Its columns consist of a sample of N features of 
dimension d. The covariance matrix C of X is computed as

,                                 (13)TEIEC 

where , I denotes the identity matrix and )111(1 T

N
I

N
I

1=[1,…,1]T is a vector whose dimensional is N. Hence, a 
symmetric positive semi-definite of covariance matrix C is 
obtained. Its eigenvalue decomposition (EVD) is given by

,                                (14)TUΛUC 
where ˄ = diag(μ1,…,μd) is a diagonal matrix whose eigenvalues 
μi are arranged in non-increasing order. U = [u1, … ,ud] is an 
orthogonal matrix and its column ui is the eigenvector 
corresponding to μi. Matrix power is converted to the power of 
eigenvalues by EVD. Thus, we have

,                           (15)Tδ U)ΛF(UCD 

where δ is a positive real number. Let F(˄)=diag(f(μ1),…,f(μd)), 
which is given by

.                                  (16)δ
ii μμf )(

Finally, matrix D is input to the FC layer. We remove most of 
FC layers which roughly contain 90% parameters of the whole 
model instead of a covariance pooling. The label distribution of 
sample is learned after softmax, as shown in Fig. 8.

3.4 Optimization
Matrix backpropagation is utilized to compute the partial 

derivative of loss function (12). The expression of chain rule is 
given as,

.                  (17)Λd
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dU
U

dD
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δ
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





According to Eq. (17), we can obtain,
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where Mdiag represents the operation, which can keep the 
diagonal entries of M while all non-diagonal entries are set as 0. 
Furthermore, the derivative of L is computed by,
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where U is the orthogonal constraint. Thus, the gradient of L 
with respect to the E can be represented as following:
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Fig. 8. Concrete architecture of the proposed AADL neural network.
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.                          (20)
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Λ

EI

Then, the AADL algorithm can be presented as Algorithm 1. 
The source Python code will be available upon request.
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Algorithm 1. Training strategy for the proposed AADL 
model.
Input: Head pose image X in image set.
Set: Batch size s, η and , parameters β1 and β2
1: Initialize network parameters θ via pre-trained model;
2: Network forward propagation;
3: while not loss function L is converged do:

sample a mini batch with size s from image X;
update θ with mini batch via stochastic gradient descent 

algorithm;
end while
Output: AADL model θ.

4. Experiment and discussion

4.1 General setting
1) Experiment platform: The famous Tensorflow is utilized 

to implement the proposed AADL network. The experiments 
are executed on a computer with an NVIDIA GeForce GTX 
TITAN V GPU and an Intel i7 CPU.

2) Training details: All images in this paper are scaled to the 
size of 224 × 224. All networks are optimized by the Adam [28] 
optimizer. The parameters are set as β1 = 0.9 and β2 = 0.999 in 
our experiments. The learning rate is decayed by an attenuation 
coefficient of 0.1 every 30 epochs with initial value 0.0001. 
Each model is trained 200 epochs by using the batched of 128.

3) Datasets: Two public HPE datasets are utilized in this 
paper.

a) Pointing’04 dataset [29]: It contains 15 subjects, whose 
ages, genders, hairstyles are different, with a total of 2790 
human face images. Yaw and pitch angles are in the range 
[-90°, 90°]. Due to the yaw angle is 0 when the pitch angle 
is ± 90°, each subject consists of total 93 discrete poses.

b) CAS-PEAL-R1 dataset [30]: It includes 1040 subjects 
30,900 images with a total of 30,900 images. The ranges 
of yaw and pitch angles are in range [-30°, 0°, 30°] and 
[-45°, -30°, -15°, 0°, 15°, 30°, 45°].

Table 1. Comparison of MA and MAE values by five different architectures.
MAE (°) MA (%)Network

architecture Pitch Yaw All Pitch Yaw All

AlexNet 1.60 2.62 2.17 90.24 81.33 79.25
ResNet50 1.20 2.74 1.97 90.45 83.26 80.26

ZfNet 1.17 2.47 1.82 92.36 83.78 81.45
VGG16 0.89 2.01 1.48 95.18 88.54 84.45
ADDL 0.71 1.62 1.23 97.09 90.57 87.31

Table 2. Comparison of MA and MAE by different algorithms on Pointing’04.
MAE (°) MA (%)

Methods Pitch Yaw All Pitch Yaw All

CNNs [4] 8.06 6.93 - 73.91 66.6 -

GLLiM [27] 7.2 6.7 13.2 - - -

SIFT-RP [28] 5.84 6.05 - - - -

MLD [26] 2.83 4.41 6.74 84.98 71.61 61.76
IndepCA(HoG) 

[29] 2.76 4.31 6.53 85.34 72.87 63.84

CartCA/MvCA 
[29] 2.04 3.25 5.01 89.21 78.96 70.93

DLDL [31] 1.69 3.16 4.64 91.65 79.57 73.15

AADL 0.71 1.62 1.23 97.50 89.87 87.32

Table 3. Comparison of MA and MAE with different algorithms on the public 
database CAS-PEAL-R1.

MAE (°) MA (%)
Methods

Pitch Yaw All Pitch Yaw All

DLDL [31] 0.57 0.49 0.51 98.45 97.96 97.38
RF + LDA 

[13] - 0.42 0.54 - 96.25 97.23

DCNN - - 0.60 - - 97.17

LGBP [30] - - 0.65 - - 97.14

kVoD [30] - 1.02 - - 94.2 -

AADL 0.21 0.15 0.19 99.35 98.87 99.26

In this paper, the fivefold cross-validation technique and 
80%–20% train-test settings are employed.

4) Metrics: Two metrics are adopted to evaluate different 
algorithms: mean accuracy (MA) and mean absolute error 
(MAE). The MA index is defined as following:

,                                (25)



N

i
iacc

k
MA

1

1

where acci is the accuracy in i-th validation, and k represents 
the number of cross validation. The MAE is formulated as 
follows,

,           (26) 



N

n
nnnn φφθθ

N
MAE

12
1 |ˆ||ˆ|

where θn and φn are the ground-truth labels in yaw and pitch 
directions, respectively. The smaller the MAE value is, the 
higher the accuracy achieves.
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Fig. 9. Comparison of false predictions by different HPE methods. The circle represents the ground-truth poses, and the poses pointed by the arrows are the false 
predicted poses. (a) Hard label. (b)DLDL method [31]. (c) Proposed AADL method.
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Fig. 10. MA values change with the parameter σ increasing on Pointing’04 and 
CAS-PEAL-R1 datasets. The parameter σ is robust on the different datasets.

4.2 Results and discussion
4.2.1 Accuracy analysis of different architecture

Four different advanced networks in the proposed method 
are compared on Pointing’04 dataset, such as AlexNet [31], 
ResNet50 [32], Inception-v2 [33], and VGG16. Our covariance 
pooling network uses the convolutional layer of VGG16 as 
backbone net to extract facial features.

In Table 1, we demonstrate the comparison of MAE and MA 
values among the five different architectures. It can be 
observed that the shallow architectures including the proposed 
network surpass the other two deep ones. One potential reason 
is that deep architectures are not suitable for small-scale 
datasets such as Pointing’04.
4.2.2 Accuracy analysis of AADL 

For accuracy comparison, our algorithm is compared with 
several state-of-the-arts algorithms on two datasets. It includes 
the MLD [34], GLLiM [35], SIFT + RP [36] and IndepCA [37]. 
In our experiments, HoG features are used by MLD, GLLiM, 
SIFT-RP and IndepCA, and CNN features is utilized by other 
methods. The MA and MAE of these models are summed in 
Table 2 and Table 3. For CAS-PEAL-R1 dataset, our method 
achieves better MA and MAE values than any other algorithms. 
It indicates that the proposed method could explore the 
distinguishing features across different categories via 
distillation the latent knowledge from constructed anisotropic 
angle distribution and robust network architecture. MLD can 
estimate the head pose by training the random forest (RF) and 
combined linear discriminant analysis (LDA). In [38], fisher 
vector of local descriptors (VoD) or its variant (kVoD) are 
distilled and nearest centroid (NC) classifier is employed to 
estimate head pose. The accuracy is still very low proposed 
since the proposed method can adequately utilize internal 
information between head pose images.
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Fig. 11. Effect of the parameters η and α on the mean accuracy. (a) Pointing04 
and (b) CAS-PEAL-R1.

To verify the effectiveness of two findings, we record the 
results predicted by three compared methods, such as general 
classification with hard labels, DLDL [39] and our AADL. The 
prediction results by the three compared methods shown in Fig. 
9. The circle represents the ground-truth pose, and the poses 
pointed by the arrow is the predicted pose. As can be seen, the 
pose tends to be mis-predicted in the adjacent yaw direction 
rather than those in pitch direction. And, false predictions are 
mostly concentrated on the range of +30° to -30°, 60° to 90° 
and -60° to -90° in yaw direction. It can be considered that since 
face images are more similar in these intervals, models are hard 
to predict accurately. However, the proposed AADL model can 
alleviate high prediction error rate as more reliable information 
is utilized to train the model.
4.2.3 Parameters discussion

The anisotropic angel labels distributions are determined by 
two parameters σ and η. The distribution become very sharp if 
the parameter σ is set as a small value. If σ is set as a large value, 
the distribution will become too smooth and joint less similar 
angle labels such as 45° to 0° in yaw angle. Thus, it is necessary 
to choose the value of σ cautiously. For this reason, to analyze 
the effect of σ, we conducted some experiments on two public 
datasets, which keep the rate value increasing from 0.6 to 1.4. 
The MA with different sampled σ is described in Fig. 9. From 
Fig. 10, it can be observed that the proposed method can 
achieve the best result when σ = 0.9, which is robust on 
Pointing’04 and CAS-PEAL-R1 datasets.

Moreover, according to the unsmooth variation property 
(key finding 2), we define the parameter  as the unsmooth 
ratio (=σ2/σ1=σ2/σ3) to explore the best values of the η. Then, 
we conducted some experiments with different parameters η 
and  on two public datasets.  Experiment result is presented in 
Fig. 11(a), we can find that the result in η = 0.9 and  = 0.9 is 
better than any other cases on Pointing’04 dataset. Different 

Table 4. MAE values comparison for pose angles when some poses are missed in the training process (Pointing’04).
Pose direction -90 -75 -60 -45 -30 -15 0 15 30 45 60 75 90

Yaw (°)

√ √ √ √ √ √ √ √ √ √ √ √ √

2.81 2.48 2.26 1.88 1.94 1.87 1.52 1.97 2.01 1.67 2.43 2.38 3.01
√ × √ × √ × √ × √ × √ × √

2.79 3.87 2.45 2.88 2.01 2.25 1.58 3.45 2.42 3.25 2.81 4.02 3.17
√ × × √ × × √ × × √ × × √

1.29 6.78 5.67 2.07 4.97 4.08 1.65 6.04 5.79 1.88 6.45 6.12 2.56

Pitch (°)

√ -- √ -- √ √ √ √ √ -- √ -- √

1.57 -- 0.93 -- 0.62 0.84 0.67 0.97 0.58 -- 0.87 -- 1.25
√ -- √ -- × √ √ √ × -- √ -- √

1.79 -- 1.45 -- 2.11 1.39 0.98 0.95 1.62 -- 1.21 -- 1.27
√ -- √ -- × × √ × × -- √ -- √

1.12 -- 0.85 -- 6.51 7.39 0.68 6.95 7.62 -- 0.91 -- 1.07
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from Pointing’04 dataset, CAS-PEAL-R1 dataset has only 
three angles [-30°, 0°, 30°] in the pitch direction and seven 
angles [-45°, -30°, -15°, 0°, 15°, 30°, 45°] in the yaw direction. 
Furthermore, the angle interval in the yaw direction is 15° but 
45° in pitch direction. The value of σ is set as 0.9 according to 
the result in Fig. 10. Since the maximum yaw angle is 45°, we 
set η = 1 when the yaw angle equals ±45° based on the 
unsmooth variation property. From the experiment results 
presented in Fig. 11(b), it can be observed that the result is 
better than any other cases when η = 0.7 and  = 0.9.

According to the quantitative analysis of the feature 
similarity, we suggest the values of parameters η and  are in 
the range (0.6, 1). The experiment results show that the values 
of η and  are indeed within this range. Thus, it can be 
concluded that our analysis is reasonable.

Fig. 12.  Effect of the head pose missing. AADL method can well predict head 
pose angles if they are partly missed in the training set. The face images with 
red borders denote the missed pose images. The results are showed in Table 4.

4.3 Robust performance for head pose missing
To demonstrate the robustness of the angle missed, we 

execute the proposed AADL method with different levels of 
image data missed. In Fig. 12, we show one group of pose 
images with partly data missed in the training set. Two network 
models are considered in this experiment. One model is trained 
on all the yaw angles, and the compared one is trained on the 
part yaw angles. We evaluate the estimation accuracy in the 
testing dataset. It is worth noting that the yaw angles of pose 
images in the testing dataset may be removed in the training 
dataset. Experimental results on Pointing’04 and 
CAS-PEAL-R1 datasets are illustrated in Table 4 and Table 5, 
respectively.
Table 5. MAE for pose angles not included in the training dataset 
(CAS-PEAL-R1). (Unit: °)

Yaw (°) -45 -30 -15 0 15 30 45
√ √ √ √ √ √ √

MAE 0.21 0.20 0.13 0.12 0.15 0.18 0.21
√ × √ × √ × √

MAE 0.27 0.41 0.19 0.58 0.17 0.48 0.23

The experiment of pitch angles is only performed in the 
Pointing’04 since the pitch angles are too sparse in 
CAS-PEAL-R1 dataset. The result is presented in Table 5. It 
can be observed that: i) The MAE of head pose increases when 
the angles of the testing data are not in the training set; ii) The 
increment of the MAE is small when the angle sampling 
interval in the training dataset is less than 30° both on yaw and 
pitch angles; iii) The MAE of head pose prediction increases 
substantially when the angle sampling interval in the training 
dataset is larger than 30°. These results suggest that our method 

can well predict the missed pose angles when the angle 
sampling interval is less than 30° in the training dataset.

(a) (b) (c) (d) (e)

Fig. 13.  From left to right, length values are 0 (original image), 5, 10, 15 and 20, 
respectively. With the length increasing, the motion blur is also raised 
correspondingly.

4.4 Effect of motion blurry for HPE
Usually, head pose images exist the motion blur problem 

since the car is waggling in the driving environment. To 
investigate the performance of the AADL network, the test 
image dataset is blurred with different blurry kernel. In Fig. 13, 
we show one group of the motion blurred images from the 
Pointing’04 dataset. The kernel of motion blurry is determined 
by two parameters, angle (or direction) and length. The angle is 
fixed at 0. The values of length are in range of {5, 10, 15, 20}. 
The larger the length value of blurry kernel, the less clear the 
head pose image.

length of motion blur length of motion blur

(a) (b)

(c) (d)
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Fig. 14.  Effect of motion blurred images on the ability of HPE on (a) (b) 
Pointing’04 and (c) (d) CAS-PEAL-R1.

Four compared methods are executed on the two public 
datasets, in which the images are blurred by different length 
blurry kernels. In Fig. 14, we plot the MA and MAE values with 
different length of motion blur kernel on Pointing’04 and 
CAS-PEAL-R1 datasets, respectively. It can be observed that 
MA values are decreased and MAE values are raised with the 
length value increasing from 0 to 20. Our method (red line with 
rhombus) still achieves the highest MA values in Fig. 14(a) and 
Fig. 14(c). With the motion blur increasing, the head pose 
image recognition rates are decreased correspondingly. In fact, 
the blur in head posed images leads to that it is very hard to 
extract the accurate image features. However, the proposed 
method can also work well due to the anisotropic angle 
distribution labels. Furthermore, the comparisons of 
comprehensive properties of all the HPE methods are provided 
in Table 6. The properties include the method type, input image 
type, feature extraction, computing speed, and performance. It 
can be observed that the proposed method achieves the 
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highlight performance.

Table 6. Comparison the performance between the proposed method and the 
state-of-the-art methods.

Methods Type Input Feature Speed Performance
Multi-Loss 

[14] Re + Cl RGB DL ★★★★☆ ★★★★☆

FAN [40] Re RGB DL ★★★★ ★★★★
FSA-Net [19] Re RGB DL ★★★★★ ★★★★☆

KEPLER 
[18] Re RGB DL ★★★★ ★★★

MLD [27] Cl RGB Hand ★★★ ★★★
CartCA

/MvCA [29] Cl RGB Hand ★★★ ★★★☆

KRF [30] Cl RGB Hand ★★ ★★☆
Our Cl RGB DL ★★★★★ ★★★★☆

5. Conclusion

In this paper, we propose a novel head pose estimation 
algorithm with the anisotropic angle distribution. Firstly, we 
analyze and reveal the two key findings in the human head pose, 
namely, anisotropic property and unsmooth variations property. 
Based on the MAP theory, the AADL model is proposed, in 
which the likelihood probability is constructed by KL 
divergence, and the priori probability is constructed as the 
Gaussian-based distribution. To train the model, a novel 
network which adopts a CNN with covariance pooling is 
proposed and the results shows it is superior to other 
well-known networks. Moreover, we investigate the effect of 
missing angle and motion blur in head pose estimation. 
Extensive experiments illustrate the advantages of our 
algorithm and demonstrate state-of-the-art performance at the 
aspect of prediction accuracy and good robustness on two 
public head pose datasets. In future, we will examine the 3D 
head pose video including roll direction for HPE task.
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Abstract: 

Head pose estimation is an important way to understand human 
attention. In this paper, we propose a novel 
anisotropic angle distribution learning (AADL) 
network for head pose estimation task. Firstly, 
two key findings are revealed as following: 1) 
Head pose image variations are different at the 
yaw and pitch directions with the same pose 
angle increasing on a fixed central pose; 2) With 
the fixed angle interval increasing, the image 
variations increase firstly and then decrease in 
yaw angle direction. Then, the maximum a 
posterior technology is employed to construct 

the head pose estimation network, which includes three parts, such as 
convolutional layer, covariance pooling layer and output layer. In the 
output layer, the labels are constructed as the anisotropic angle 
distributions on the basis of two key findings. And the anisotropic 
angle distributions are fitted by the 2D Gaussian-like distributions 
(groundtruth labels). Furthermore, the Kullback-Leibler divergence is 
selected to measure the predication label and the groundtruth one. The 
features of head pose images are perceived at the AADL-based 
convolutional neural network in an end-to-end manner. Experimental 
results demonstrate that the developed AADL-based labels have 
several advantages, such as robustness for head pose image missing, 
insensitivity for the motion blur. Moreover, the proposed method has 
achieved good performance compared to several state-of-the-art 
methods on the Pointing’04 and CAS_PEAL_R1 databases.
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Highlights:
1. A novel anisotropic angle distribution learning (AADL) 
method is proposed for head pose estimation.
2. For a central pose, head pose image variations are different 
even increasing the same pose angle in yaw and pitch 
directions.
3. A 2D Gaussian-like distribution is defined to fit the 
anisotropic angle labels.
4. The robustness of the proposed model is verified by 
extensive experiments.
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